
How to Thread a Hydro Code with OpenMP

Andy Nonaka, Mike Lijewski
Center for Computational Sciences and Engineering
Lawrence Berkeley Laboratory
HIPACC Summer School – July 25, 2011

OpenMP home page: www.openmp.org

OpenMP user’s group: www.compunity.org

Books
“Using OpenMP”, Chapman

“Parallel Programming in OpenMP”, Chandra

NERSC (or other supercomputing center)
web pages

Web in general (e.g., google)

OpenMP is a parallel programming model for multicore architectures
with shared memory.

In this talk, a “node” is some processing unit where all the cores can
access the same memory without parallel communication

c c

c c

c c

c c

c

c

c c

c c

c

c
M

M

M M

M M
c c

c c

c

c

c c

c c

c

c

c c

c c

c

c

c c

c c

c

c

NERSC franklin node
(and perhaps your laptop)
-4 cores per processor
-1 processor per node
-8 GB memory per node

M

OLCF jaguar node
-6 cores per processor
-2 processors per node
-16 GB memory per node

NERSC hopper node*
-12 cores per processor
-2 processors per node
-32 or 64 GB memory per node

*On hopper, a NUMA (non-uniform memory access) node is 6 cores on one half of a processor

Note: For some architectures, due to latency, a core will access
memory slower if not directly connected to it

c c

c c

c

c

c c

c c

c

c
M

M

M M

M M
c c

c c

c

c

c c

c c

c

c

c c

c c

c

c

c c

c c

c

c

OLCF jaguar node
-6 cores per processor
-2 processors per node
-16 GB memory per node

NERSC hopper node
-12 cores per processor
-2 processors per node
-32 or 64 GB memory per node

Here we assume a finite-volume, block-structured
approach to parallelism.

Using pure MPI, we assign each block of data to a core.
Each block of data has ghost cells. We use MPI parallel
communication to fill ghost cells.

Say you have four grids. In a pure MPI approach you
would assign each grid to a core.

c c

c c

NERSC franklin node

Say you have four grids. In a pure MPI approach you
would assign each grid to a core.

Instead, assign a single, larger block of data to a node
rather than a core …

c c

c c

NERSC franklin node

c c

c c

Say you have four grids. In a pure MPI approach you
would assign each grid to a core.

Instead, assign a single, larger block of data to a node
rather than a core …

… and then spawn a thread on each core to
simultaneously work on the data

A master thread spawns a team of threads, then closes
the threads when the loop is done

Master
Thread

Parallel Regions

ijk work loop ijk work loop ijk work loop

We implement OpenMP at the loop level. Let’s say we
had a work loop (Fortran90)

A single core performs work on this grid.

c c

c c

NERSC franklin node

! simple work loop

do j=1,8

 do i=1,8

 “do work”

 end do

end do

Add “omp directives”, which look like comments, but with the
correct flags, the compiler will recognize them.

For PGI compilers (PrgEnv-pgi), we will compile with “ftn –mp=nonuma”,
as documented on the NERSC web site:
www.nersc.gov/users/computational-systems/hopper/programming/compiling-codes/

c c

c c

NERSC franklin node

! simple work loop

!$omp parallel do private(j,i)

do j=1,8

 do i=1,8

 “do work”

 end do

end do

!$omp end parallel do

The OpenMP directives we add to our code basically
tell each thread/core to do the following:

c c

c c

NERSC franklin node

do j=1,2

 do i=1,8

 “do work”

 end do

end do

do j=3,4

 do i=1,8

 “do work”

 end do

end do

do j=5,6

 do i=1,8

 “do work”

 end do

end do

do j=7,8

 do i=1,8

 “do work”

 end do

end do

! simple work loop

!$omp parallel do private(j,i)

do j=1,8

 do i=1,8

 “do work”

 end do

end do

!$omp end parallel do

break up the first
“do” loop encountered

The OpenMP directives we add to our code basically
tell each thread/core to do the following:

! simple work loop

!$omp parallel do private(j,i)

do j=0,7

 do i=0,7

 “do work”

 end do

end do

!$omp end parallel do

“private” means each thread gets
its own, uninitialized copy

“j” is optional, i.e., private by
default

Order not important – I tend to list
things in the order they appear

do j=1,2

 do i=1,8

 “do work”

 end do

end do

do j=3,4

 do i=1,8

 “do work”

 end do

end do

do j=5,6

 do i=1,8

 “do work”

 end do

end do

do j=7,8

 do i=1,8

 “do work”

 end do

end do

On hopper, copy the contents of
/project/projectdirs/training/HIPACC_2011/nonaka/OpenMP_tutorial/
to your home directory or scratch space on hopper

Files:
OpenMP_tutorial_part1.f90

OpenMP_tutorial_part2.f90

OpenMP_tutorial_part3.f90

hopper.run

hopper_6threads.run

hopper_12threads.run

hopper_24threads.run

hopper_6threads_ann.run

Compile and run without threads
“ftn OpenMP_tutorial_part1.f90”

“qsub hopper.run”

Add OpenMP directive to ijk loop

Compile and run with threads
“ftn –mp=nonuma OpenMP_tutorial_part1.f90”

“qsub hopper_6threads.run”

“qsub hopper_12threads.run”

“qsub hopper_24threads.run”

Compare solution and run time between all four runs.

In this previous cartoon, each core is still doing work
on exactly 8 computational grid cells, so what’s the
advantage?

Since memory is shared within a node, we can assign a
large grid to a node, rather than more smaller grids to
individual cores

Allows for fewer, larger grids.
So how does this help us?

c c

c c

NERSC franklin node

How does having fewer, larger grids help performance?
Fewer ghost cells, so less overall memory used in your
program

Less memory overhead to keep track of grid structure and
parallel communication patterns

Fewer MPI processes, which speeds up parallel
communication

Communicating fewer, larger blocks of ghost cell data, which
speeds up parallel communication

Depending on your problem, some advantages are
more important than others.

Complex reaction networks: memory limited

Linear Solvers: parallel communication limited

In CASTRO and MAESTRO, our bottleneck for
performance has been parallel communication time,
and not memory usage (so far), so we have focused
more on using threads for scalability.

Since you can “thread” your code incrementally (i.e.,
add OpenMP directives to one loop at a time), you can
test to make sure your results stay identical after
“threading” any one loop.

You can also measure the performance gains (speed of
execution) due to threading that one loop.

It takes a finite amount of time for your code to spawn and
close threads at runtime, so you will not always see a speed
boost.

Example: Running CASTRO with only hydro and reactions for
smallish problems (a few thousand cores) and 6 threads only
speeds up by a factor of 3 as compared to pure MPI with 1/6th the
total number of cores.

You will (generally) be able to run faster given the same number
of cores using threads if your problem uses linear solvers (Poisson
gravity, Elliptic pressure/projection solves) and you have more
than 1,000 MPI processes since communication is so time-
intensive.

Sometimes you will have to run with threads and take a
performance hit if memory is of concern.

Sometimes you will have to run with threads and take an
efficiency hit if you just want the code to run faster.

If you are doing very little work within your i,j,k loop
(like simply doing a copy or adding two numbers),
threads can actually slow down your program since
they take some time to spawn and close.

Also applies if your grid is small – there just isn’t that much
floating point work to do.

The number of threads you use for optimal performance is
architecture-dependent.

Rule of thumb: try not to make a thread reach for memory it’s not
directly connected to

c c

c c

c c

c c

c

c

c c

c c

c

c
M

M

M M

M M
c c

c c

c

c

c c

c c

c

c

c c

c c

c

c

c c

c c

c

c

NERSC franklin node
(and perhaps your laptop)
-4 cores per processor
-1 processor per node
-8 GB memory per node

M

OLCF jaguar node
-6 cores per processor
-2 processors per node
-16 GB memory per node

NERSC hopper node
-12 cores per processor
-2 processors per node
-32 or 64 GB memory per node

Compile and run without threads

Add OpenMP directive to ijk loop

Compile and run with 6, 12, and 24 threads
Compare run times between all four runs

Add more work to the loop (uncomment the line I put in there)

Compile and run with 6, 12, and 24 threads
Compare run times between these three runs

Add even more work to the loop (uncomment the line I put in
there)

Compile and run with 6, 12, and 24 threads
Compare run times between these three runs

In an OpenMP do loop, all
variables are considered
“shared” unless you explicitly
label them as “private”.

Shared means all threads
access the same copy of the
variable owned by the master
thread

Private means each thread gets
its own uninitialized copy

In this example both “y” and
“z” are private, whereas “x” is
shared.

integer i,j

double precision a(1:8,1:8)

double precision x,y,z

x = 10.0d0

! initialize “a”

!$omp parallel do private(j,i,y,z)

do j=1,8

 do i=1,8

 y = x*(i+j)

 z = i*j

 a(i,j) = y + z

 end do

end do

!$omp end parallel do

Special syntax for
reductions (sum,
minimum, maximum)

Need to give sum,
minval, and maxval
initial values or else it
will begin with the
default values of

sum: 0.0

minval: 0.0

maxval: 1.0

integer i,j

double precision a(1:8,1:8)

double precision sum, minval, maxval

minval = HUGE

maxval = -HUGE

! assume “a” has been initialized

!$omp parallel do private(j,i) reduction(+:sum) &

!$omp reduction(min:minval) reduction(max:maxval)

do j=1,8

 do i=1,8

 sum = sum + a(i,j)

 minval = min(minval,a(i,j))

 maxval = max(maxval,a(i,j))

 end do

end do

!$omp end parallel do

Compile and run without threads

Add OpenMP directive to each ijk loop

Compile and run with 6, 12, and 24 threads
Compare solution and run times between all four runs

See what happens if you “mess up”. Try running the
following with threads, and see what happens to the
answer.

In the second ijk loop, don’t make var1 and/or var2 private

In the third ijk loop, make x private

In the fourth ijk loop, either make sum, minval, and/or maxval
private, or don’t include them in the OpenMP directive at all

These tutorials cover everything you need to know
about threading the hydro codes you wrote this week.

These tutorial cover 99% of what we needed to know
to put OpenMP into CASTRO and MAESTRO.

Time permitting, I’ll show you some examples of the two
other OpenMP directives we used

The IF clause

THREADPRIVATE for common blocks in EOS and reaction
networks

Time permitting, I’ll introduce some other OpenMP
directives including

FIRSTPRIVATE, LASTPRIVATE, SINGLE

Thread the advance_2d.f90 subroutine from Ann’s hydro
code example
/project/projectdirs/training/HIPACC_2011/almgren/BoxLibTest

To build, “module swap PrgEnv-pgi PrvEnv-gnu”, then
“make USE_OMP=TRUE”. You will get an executable with a
new name.

Run with 6 threads per MPI process (i.e., 6 times as many
cores) and see how performance compares to pure MPI

Using some of the principles we discussed today, there are
several optimizations within advance_2d.f90 that can make
the threaded version of the code run about 7-8% faster. See if
you can find them.

Try threading some routines in your hydro code to compare
performance (make sure to check the answer remains the
same)!

